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LONG TERM GOALS 
 
The long-term goal of this project is to provide a flexible, accurate and extensible automated target 
recognition (ATR) system for use with a variety of imaging and non-imaging sensors.  Such an ATR 
system, once it achieves a high level of performance, can relieve human operators from the tedious 
business of pouring over vast quantities of mostly mundane data, calling the operator in only when the 
computer assessment involves an unacceptable level of  ambiguity. The ATR system will provide most 
leading edge algorithms for detection, segmentation, and classification while incorporating many novel 
algorithms that we are developing at Metron.  To address one of the most critical challenges in ATR 
technology, the system will also provide powerful feature extraction routines designed for specific 
applications of current interest. 
 
OBJECTIVES 
 
The main objective of this project is to develop a complete, flexible, and extensible modular automated 
target recognition (MATR) system for computer aided detection and classification (CAD/CAC) of 
target objects from within cluttered and possibly noisy image data.  The MATR system framework is 
designed to be applicable to a wide range of situations, each with its own challenges, and so is 
organized in such a way that the constituent algorithms are interchangeable and can be selected based 
on their individual suitability to the particular task within the specific application.  The ATR system 
designer can select combinations of algorithms, many of which are being developed at Metron, to 
produce a variety of systems, each tailored to specific needs.  While the development of the system is 
still ongoing, results for mine countermeasures (MCM) applications using electro-optical (EO) image 
data have been encouraging. A brief description of the system framework, some of the novel 
algorithms, and preliminary test results are provided in this interim report. 
 
APPROACH 
 
The MATR system is composed of several modules, as depicted in Figure 1, reflecting the sequence of 
steps in the ATR process. The detection step is concerned with finding portions of an image that 
contain possible objects of interest, or targets, that merit further attention.  During the localization and 
segmentation phase the position and approximate size and shape of the object is estimated and a 
portion of the image, or “snippet,” containing the object is extracted.  At this stage, image processing 
may be performed on the snippet to reorient the target, mitigate noise, accentuate edge detail, etc.  
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Low-level pixel information (e.g., pixel intensities, hues, etc.) is then arranged into an attribute vector.  
At the feature extraction step, the most discriminating high-level characteristics of the attribute vectors 
are distilled from the attribute vector, and this summary information is formed into the feature vector. 
The feature vector is submitted to the classification process, where the object in the snippet is 
classified or identified. Performance of the system is typically measured in terms of probabilities of 
correct classification/identification and false alarm rates. 
 
 

 
 

Figure 1: Schematic of modular automated target recognition system. 
 
 
While the MATR system is designed to address many computer assisted target detection and 
classification problems using a different types sensor data, it is presently being applied to bottom mine 
hunting using electro-optical imaging systems such as those incorporated within the AN/AQS-24 and 
AN/AQS-20 systems.  Electro-optical system imagery used for MATR system development and 
testing is taken from a data set acquired during EOID systems tests, sponsored by the Office of Naval 
Research (ONR), which took place in the Panama City Beach (PCB) area in August 2001 [1].  Selected 
image snippets of various targets and clutter objects are shown in Figure 2 and Figure 3, respectively.  
These objects display a variety of shapes and patterns, but there are similarities between some of them. 
For example, the Manta mine shape and the tire are similar in shape, and the DST-36 mine shape 
resembles the shell casing.  The snippets in these figures are some of the clearest examples of each 
object in the data set, while many other snippets are occluded by fish schools, degraded by noise, 
and/or marked by very low contrast. For example, at the top of the images in Figure 4 a school of fish 
is obstructing the view of a culvert lying on the bottom.  
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Figure 2: Example snippets of various targets in field. Clockwise from the top left  
are a Manta mine shape, a Rockan, an MR-80, a shell casing, and a DST-36. 

 
 
Other data sets that are being used in the development of the MATR system include synthetic aperture 
sonar imagery from the Small Synthetic Aperture Minehunter (SSAM), collected during the AUV Fest 
in 2005, and the Yale Face databases [2]. The synthetic aperture sonar data is mainly being used to 
support the development of object detection and segmentation algorithms. The Yale Face set of images 
is being used to develop and test the feature extraction and classification algorithms.  The use of data 
from a variety of different sources ensures that the methodologies being developed are robust, and are 
not relying on information particular to a specific sensor or situation. Also, it is important to note that 
the Yale Face images are all oriented in the same way while the target and clutter data from the EOID 
imagery is currently submitted to the classifier without reorienting the objects to line up in any 
particular way. The lack of consistent orientation in the EOID image snippets complicates matters for 
the classifier. Perhaps surprisingly, with sufficient training data from which to learn the various 
orientations the classifier performance is still very good with the EOID dataset without reorientation, 
but will no doubt improve with the development of a reorientation algorithm.  
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Figure 3: Example snippets of various clutter objects in field. Clockwise from 
 the top left are a tire, a concrete clump, a culvert, an oil drum, and a crab trap. 

 
 
WORK COMPLETED 
 
The following is a brief description of current algorithms in the various ATR modules. Comparisons 
with other state-of-the-art approaches are demonstrated. Classification methodology and results are 
also described. 
 
Object Detection and Segmentation 
 
Detection involves locating objects within an image. Segmentation requires further knowledge of the 
approximate sizes and shapes of the objects. In the present case, we assume no prior knowledge of 
location, object size or shape.. For grayscale imagery we propose a simple detection/segmentation 
technique based on the histograms of image subframes. Within the subframe the image is reduced to a 
binary mask based on whether the pixel intensities are greater or less than the mean intensity within the 
frame. The resulting binary mask is then compared to a circle inscribed within the frame and assigned 
a rating according to a scaled inner product. A rating surpassing a threshold indicates a “fit,” or 
detection. In Figure 4 we show a typical comparison between our “histogram” technique and a 
relatively new method described in Ref. [3-5], which uses image entropy maximization to determine 
the salient regions of an image,. The results clearly demonstrate the superiority of the “histogram” 
technique.  
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Figure 4: Comparison of the “histogram” detection method (left) with  
the entropy maximization approach (right) using EOID data. 

5 



Image Processing 
 
EOID systems are often power limited, so that low signal-to-noise ratio (SNR) typically plagues EOID 
imagery. This type of image degradation can be ameliorated by using median or mode noise reduction 
filters, which are described in Ref. [6], for example. These filters work well at reducing noise while 
preserving texture and edge detail, which tend to get blurred away by Gaussian noise reduction filters.  
Figure 5 shows a checkerboard pattern with varying length scales with and without additive noise. 
Figure 6 shows the results after several passes of median, mode, and Gaussian de-noising filters.  It is 
clear that the texture at smaller scales is blurred away by the Gaussian filter while it is still discernable 
(though degraded) with the median and mode filters.  Image enhancement techniques such as these de-
noising algorithms are an important preprocessing step that we apply prior to feature extraction and 
classification, where it is important not to corrupt identifying image features such as texture. 
 
 

             
 

Figure 5: Checkerboard image (left) and the same image with additive Guassian noise (right) 
 
 

     
 

Figure 6: Noisy image after several iterations of a median filter (left),  
mode filter (middle) or Gaussian filter (right) and contrast stretching. 

 
 
Feature Extraction 
 
Image snippets generated by the segmentation process can be composed of many thousands, tens of 
thousands, or even millions of pixels. For classification purposes we first extract image features using 
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the Principle Components Analysis (PCA) method developed in Ref. [7].  The fundamental objective 
of PCA is to reduce the dimensionality of the problem by expanding the image data in terms of the 
eigenmodes, and then retaining only the modes that are a rich source of identifying information [8].  
The  eigenmodes constitute  a new basis for the image description, and most of the class-to-class 
variability in the images, and therefore most of the image relevant information, is contained in the 
directions of the eigenmodes associated with the largest eigenvalues.  By using PCA we can reduce the 
dimensionality of the image description by several orders of magnitude, thereby speeding up the 
classification process, while maintaining the same level of classifier performance. 
 
Classification Method and Results 
 
A variety of classification methods can be employed.  We are currently employing a neural network 
(NN) to perform the classification of the image vectors.  We have tested our approach using the Yale 
Face database, which contains 15 subjects with 11 images each. We used 10 for training and 1 image 
for testing for each subject, in various combinations, with perfect results (100% correct identification).  
By way of comparison, a Euclidean distance based classification scheme achieved a lower 
performance of 90% correct identification. 
 
A similar training and testing procedure was used on a second, larger database of underwater electro-
optical bottom target imagery, examples of which are shown in Figures 2 and 3. This database 
demonstrated several complicating factors such as variations in orientation and scale within the image 
snippets. Despite these disadvantages the PCA+NN approach  correctly identified approximately 90% 
of the targets in these test images.  Again, the Euclidean distance based classification scheme posted a 
poorer performance with about 80% of the targets correctly identified. 
 
RESULTS 
 
Main results include the development of several novel object detection and segmentation techniques 
that outperform other documented methods.  These novel techniques are currently being extended to 
accurately determine the shape and boundaries of contiguous objects. Further, a very powerful and 
general technique combining feature extraction with neural network classifiers  has been developed for 
2D grayscale images and which provides excellent results across a range of applications (e.g., face 
recognition, mine identification, etc.) . The approach taken provides excellent classification results 
across a variety of applications. 
  
IMPACT/APPLICATIONS 
 
The two most important remaining problems in automated target recognition are segmentation and 
feature extraction. With the development of fast, accurate and robust segmentation algorithms, capable 
of delineating the boundaries of complex patterned objects against various backgrounds, real-world 
application of ATR systems to MCM operations becomes much more feasible.  Classifier technology 
being very mature, the performance of such systems then hinges mainly on the quality of  the features 
that are extracted from the data segment and submitted to the classifier.  Ideally, a high-performance 
ATR system would impact MCM operations by replacing the human operator altogether.  More 
realistically, an effective ATR system would elevate the human operator to a supervisory role where 
the computer takes on the more mundane tasks that otherwise would occupy the vast majority of the 
operator’s time.  This would reduce manpower requirements and eliminate the errors due to human 
operator fatigue. 
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